
Chayanon (Namo) Wichitrnithed1, Woo-Sun Yang2, Helen He2, Brad Richardson2, Koichi Sakaguchi3, Manuel Arenaz4,

William I. Gustafson3, Jacob Shpund5, Ulises Costi Blanco4, Alvaro Goldar Dieste4

1Oden Institute, UT Austin, 2Lawrence Berkeley National Laboratory, 
3Pacific Northwest National Laboratory, 4Appentra Solutions S.L., 5The Hebrew University of Jerusalem

ABSTRACT

ACKNOWLEDGMENTS

This research used resources of the National 
Energy Research Scientific Computing Center, 
which is supported by the Office of Science of the 
U.S. Department of Energy under Contract No. 
DE-AC02-05CH11231.

BACKGROUND
• The Weather Research and Forecasting Model 

(WRF) is a numerical weather prediction system 
written in Fortran and is widely used for 
both research and operational work

• Solves the 3D Euler equations using finite 
differences, and parallelized through 
domain decomposition (MPI) and shared 
work within each domain (OpenMP)

• Computationally expensive routine: Fast Spectral-
Bin Microphysics (FSBM) scheme computes 
discrete 33 particle sizes for each grid point 
(Figure 1)

OBJECTIVE

Explore the use of both profilers and static code 
analyzer (Codee) to offload expensive routines of WRF 

to GPUs on Perlmutter through 
OpenMP offload capabilities

Currently, the Weather Research and Forecasting
model (WRF) utilizes shared memory (OpenMP)
and distributed memory (MPI) parallelisms. To take
advantage of GPU resources on Perlmutter, we port
parts of the computationally expensive routine Fast
Spectral Bin Microphysics (FSBM) to GPUs using
OpenMP device offloading. The optimization
process is guided by a combination of profilers and
a static code inspection tool Codee, resulting in a
1.88x overall speedup for the CONUS-12km winter
storm test case.

Optimizing the Weather Research and Forecasting Model 

with OpenMP Offload and Codee

METHODOLOGY

• Achieved a total of 1.88x speedup for the CONUS-
12km case through porting major FSBM 
calculations to GPUs with OpenMP

• Explored a workflow for 
optimization: identifying hotspots with 
profilers and using Codee to gain more detailed 
insights of the source code

• Next steps: offload remaining parts of FSBM 
and reduce host-device data transfers

RESULTS

Figure 1: Comparison between bulk microphysics schemes 
(left) and the more expensive bin schemes (right). Image from 

Morrison et al,. 2020.

• Codee is a command-line static code inspection 
tool for C, C++ and Fortran that analyzes the 
source code for modernization and performance-
related issues

Figure 2: GPU roofline plot comparison of step 3 and 4, showing an 
increase in FLOP/s from higher occupancy.

CONCLUSION

• Test case: 10-min simulation of CONUS-12km (2019 
Winter Storm) with 325 x 400 x 50 grid points.

• Compiled using PrgEnv-nvidia/8.5.0

• Timings done using 32 MPI ranks and 1 GPU per 
rank

Table 1: Wall time and speedup comparison of 
different steps of optimization

1. A hotspot subroutine within FSBM is identified by 
gprof, but contains shared arrays between grid points

2. Get dependency information from Codee and replace 
shared lookup arrays with independent function calls

3. Offload only outer 2 loops (j,k) due to large stack usage by 
automatic arrays inside the subroutine

4. Replace automatic arrays with slices of global arrays, allowing 
a full collapse of the 3 loops, increasing thread occupancy

Time (s) Speedup
Cumulative 

Speedup

Baseline 733.7 - -

Lookup 

Optimization
506.2 1.44x 1.44x

Offloading 

outer 2 loops
423.3 1.19x 1.73x

Offloading all 

3 loops
388.8 1.08x 1.88x

Double-precision

Single-precision

Codee detects no loop-

carried dependencies


	Slide 1

